题面描述
农夫约翰的奶牛们喜欢通过电邮保持联系,于是她们建立了一个奶牛电脑网络,以便互相交流。这些机器用如下的方式发送电邮:如果存在一个由c台电脑组成的序列a1,a2,…,a(c),且a1与a2相连,a2与a3相连,等等,那么电脑a1和a(c)就可以互发电邮。
很不幸,有时候奶牛会不小心踩到电脑上,农夫约翰的车也可能碾过电脑,这台倒霉的电脑就会坏掉。这意味着这台电脑不能再发送电邮了,于是与这台电脑相关的连接也就不可用了。
有两头奶牛就想:如果我们两个不能互发电邮,至少需要坏掉多少台电脑呢?请编写一个程序为她们计算这个最小值。
以如下网络为例:
1
/
3 —- 2
这张图画的是有2条连接的3台电脑。我们想要在电脑1和2之间传送信息。电脑1与3、2与3直接连通。如果电脑3坏了,电脑1与2便不能互发信息了。
输入格式
第一行 四个由空格分隔的整数:N,M,c1,c2.N是电脑总数,电脑由1到N编号。M是电脑之间连接的总数。最后的两个整数c1和c2是上述两头奶牛使用的电脑编号。连接没有重复且均为双向的(即如果c1与c2相连,那么c2与c1也相连)。两台电脑之间至多有一条连接。电脑c1和c2不会直接相连。
第2到M+1行 接下来的M行中,每行包含两台直接相连的电脑的编号。
输出格式
一个整数表示使电脑c1和c2不能互相通信需要坏掉的电脑数目的最小值。
样例
输入
|
|
输出
|
|
数据范围
1<=N<=100, 1<=M<=600
思路
求最小割点集的大小
将每个点拆成点$u$和点$u + n$,从$u$到$u+ n$ 连一条边权为$1$的边。
|
|
对于图中原来存在的边$u \implies v$ ,使$u + n$连向$v$, $v + n$ 连向$u$ ,边权都为无穷大。
|
|
然后对然后以源点$S + n$,汇点$T$跑一边最大流就行了。
代码
|
|